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Among the model order reduction techniques, the Proper Orthogonal Decomposition (POD) has shown its efficiency to solve
magnetostatic and magneto-quasistatic problems in the time domain. However, the POD is intrusive in the sense that it requires the
extraction of the matrix system of the full model to build the reduced model. Then, nonintrusive approaches like the Data Driven
(DD) method enables to approximate the reduced model without the access of the full matrix system. In this communication, the DD
method is applied to solve a magnetostatic problem coupled with electric circuit equations.

Index Terms—Data driven, finite element model, model order reduction.

I. INTRODUCTION

To reduce the computation time of large-scale dynamical
Finite Element (FE) models, Model Order Reduction (MOR)
methods have been developed and presented in the literature.
These methods consist in searching a solution into an ap-
proximation subspace of the full numerical model. Then, the
size of the equation system to solve can be highly reduced.
The most popular MOR technique is the Proper Orthogonal
Decomposition (POD) [1]. This approach requires to solve
the full model for different time steps (called snapshots) to
determine a reduced basis. Then, from the matrix system of
the full model, the reduced model can be constructed and
solved for all other time steps. This approach is well adapted
if the matrix system can be extracted from the FE software.
With commercial FE softwares, the matrix system is not
necessarly accessible. Nevertheless, nonintrusive approaches of
MOR, like Data Driven (DD) methods, have been developed
in the literature [2]. One of these approaches [3], based on
the snapshots, builds an approximation of the reduced model
from the known inputs and outputs of the full model. In low
frequency, a significant number of nonlinear magnetostatic or
magnetodynamic problems have been studied with POD but
not with nonintrusive approaches [4], [5], [6], [7].

In this communication, the DD approach is applied to build
a reduced model in order to solve a magnetostatic problem
coupled with electric circuit equations using the vector po-
tential formulation. The DD reduced model is based on the
known inputs (voltage, current, resistances, ...) and the outputs
(linkage flux, solution vector, ...) from the snapshots. A three
phase transformer is studied with the classical POD method
and the DD approach. The results obtained with both reduced
models are compared in terms of accuracy and computation
time with the full model.

II. MAGNETOSTATIC PROBLEM WITH ELECTRIC EQUATIONS

To solve a magnetostatic problem coupled with Nind electric
circuit equations, the vector potential formulation can be used.

After discretisation by the FE method, the matrix system to
solve is [
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with M the stiffness matrix depending on the magnetic reluc-
tivity, F a matrix depending on the geometries of the stranded
inductors, x the vector solution of size Nx composed of the
circulations of the vector potential A along the edges of the
mesh, i the currents flowing the stranded inductors, v the
voltages applied to the stranded inductor terminals and R
the diagonal matrix of the resistances. The linkage flux φk
associated with the k-th inductor is expressed by φk = F t

kx.

III. MODEL ORDER REDUCTION

A. Proper Orthogonal Decomposition

To conserve the structure of the matrix system during the
reduction and insure stability, a structure preserving MOR [6]
is performed. The full model (1) is solved for different time
steps in order to obtain a set of Ns solutions and to create the
snapshot matrix Xs such as Xs = [x(t1),x(t2), . . . ,x(tNs

)] ∈
RNx×Ns . The snapshots can be determined during the first time
steps or in a preprocessing step based on a greedy algorithm.
The singular value decomposition applied to Xs, such as
Xs = UΣW t, allows to obtain the reduced basis Ψ ∈ RNx×Nr

formed by the Nr (Nr ≤ Ns) first columns of U . Nr can be
determined by a truncation strategy. The solution vector x is
approximated with the basis Ψ such that x ' Ψxr, and then the
equation associated with the magnetic part in (1) is multiplied
by Ψt to obtain the reduced system,[
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with Fr = ΨtF and Mr = ΨtMΨ.

B. Data-Driven POD

The principle of the DD combined with the POD is to create
an approximation of the reduced system (2) from the snapshots
of the full model, without knowing the full matrix system.



Snapshot matrices associated with each output are defined
such as Xs = [x(t1),x(t2), . . . ,x(tNs

)] ∈ RNx×Ns , Is =
[i(t1), i(t2), . . . , i(tNs

)] and Φs = [φ(t1), φ(t2), . . . , φ(tNs
)] ∈

RNind×Ns . From Xs, a reduced basis Ψ is determined in the
same way as the one used for the POD (see III-A), and the Xs

is projected onto the reduced space by Xr = ΨtXs. The idea
of the DD-POD is to find the reduced operators (Fr and Mr)
of the system (2) from Is, Φs and Xr. Firstly, the operator Fr

is deduced by using the relation between the solutions and the
fluxes that must be verified for each snapshot: then we have
Xt

rFr = Φt
s. Each column of Fr can be identified by solving

the minimisation problem

Fr,k = arg min
y
‖Xt

ry − Φt
s,k‖, k = 1, . . . , Nind. (3)

Secondly, the matrix Mr is deduced from the first equation of
(2). This relation must be verified for each snapshot such that
Xt

rM
t
r + ItsF

t
r = 0. Then, the previous system is overdeter-

mined. The k-th row of Mr can be determined by

M t
r,k = arg min

y
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r,k‖, k = 1, . . . , Nr. (4)

IV. APPLICATION

In term of application, a linear 2D three-phase EI trans-
former is considered. Figure 1 presents the mesh. To built
the reduced models from the POD and DD-POD approaches,
the Offline/Online method is used. During the Offline step,
the snapshots are computed for the typical tests at no load
and in short circuit [7] on the first period, with 30 time-
steps. Then, the POD and DD-POD models are defined and
used to study another operating point. The full model has
4265 spatial unknowns, when both reduced models are reduced
to 5 unknowns. During the Online step, a resistive load is
connected with the secondary windings. Figure 2 presents the
evolutions of the primary currents at the beginning of the
simulation obtained from the full, POD and DD-POD models.
The waveform of the currents from both reduced models are
close to the references. The mean error on the current is
0.4013% with the DD-POD model and 0.0001% with the POD
model. For both models, the speed-up is close to 250. Figure
3 gives the distribution of the magnetic flux density from the
full model at a given time step and the errors between the
full model and the reduced models. The errors are smaller
with the POD model than the DD-POD model, nevertheless the
magnitudes of the error from the DD-POD are small compared
with the magnetic flux density.

The efficiency of the DD-POD approach with a nonlinear
behavior of the magnetic core will be investigated.
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Fig. 1. Mesh of the 2D three-phase transformer.
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Fig. 2. Primary currents for the reference, POD and DD-POD models.

Fig. 3. Distribution of the magnetic flux density (T) from the full model (a)
and of the error for the POD (b) and DD-POD (c) models.
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